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Abstract 
We describe and demonstrate a construct termed a "virtual tool", that provides a flexible 

interface to sensory-motor control. This interface is, from a user standpoint, substantially less 
complex, and more application-oriented than the raw devices. The basic idea is to use extra degrees 
of freedom present in a flexible system, in conjunction with sophisticated sensing (e.g. vision), to 
dynamically configure or "tailor" a manipulator so that it is matched to a particular situation and 
operation. This "virtual tool" is created by imposing customized, sensory modulated constraints 
between various degrees of freedom in the system. The remaining degrees of freedom constitute a 
small set of control parameters that are fitted to a particular operation. We argue that, within the 
confines of fairly broad application domains, a small set of "tool classes" can be defined that will 
serve as a general purpose sensory-motor toolbox for a wide variety of applications. We further 
argue that such class definitions can be made portable not only across tasks, but across platforms as 
well. The implementation of a number of basic tool classes, on various platforms, using vision and 
other sensory modalities, is described; and their use in performing multi-stage sensory-modulated 

manipulation tasks is illustrated. 

Accesion For 

IMTIS    CRA&I 
DTIC    TAB 
Unannounced 
Justification 

D 

By  
Distribution/ 

Availability Codes 

'This research was supported by ONR grant number N00014-93-I-0221. 

Dist 

m 
Avail and/or 

Special 

DISTRIBUTION STATEEENTX 

Approved for public release; 
 Distribution Unlimited 



REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 
Public reporting burden tor this collection of Information 1« estimated to ««rag« 1 hour par re«pon«a, Including the time tor reviewing Instructions, searching existing data 
sources, gathering and malntakilng the data needed, and completing and reviewing the cotleotlon of kiformatlon.  Send comments regarding this burden estimate or any other 
aspect of this collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate  for tiformatlon Operations and 
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Offloe of Management and Budget, Paperwork Reduction Pro|ect (0704-0188), 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
March 1995 

3. REPORT TYPE AND DATES COVERED 
technical report 

4. TITLE AND SUBTITLE 

Virtual Tools: A Framework for Simplifying Sensory-Motor Control in Robotic Systems 

5. FUNDING NUMBERS 

ONRN00014-93-I-0221 

6. AUTHOR(S) 

R.C. Nelson, M. Jägersand, and O. Fuentes 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 
Computer Science Dept. 
734 Computer Studies Bldg. 
University of Rochester 
Rochester NY   14627-0226 

8. PERFORMING ORGANIZATION 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES(ES) 

Office of Naval Research 
Information Systems 
Arlington VA 22217 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

TR576 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 

Distribution of this document is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT   (Maximum 200 words) 

(see title page) 

14. SUBJECT TERMS 

sensory-motor control; visual robotics; robot user interfaces 

15. NUMBER OF PAGES 

25 pages 
16. PRICE CODE 

free to sponsors; else $2.00 

17. SECURITY CLASSIFICATION 
OF REPORT 

unclassified 

1a SECURITY CLASSIFICATION 
OF THIS PAGE 

unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

unclassified 

20. LIMITATION OF ABSTRACT 

UL 

NSN   7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. 239-18 



1     Introduction 

1.1 A Difficult Domain: Automation in Poorly Modeled Environments 

In the last decade, robots of increasingly sophisticated mechanical design have been constructed. In 
domains where accurate geometric models of the world can be obtained and good kinematic models 
of the robot exist, a great deal of progress has been made in devising control schemes that allow such 
devices to be used in applications. Programmable manipulation devices are now routinely incorpo- 
rated into industrial operations, from automobile manufacture to electronic component assembly, 
where they perform operations that were previously performed by customized, cam actuated de- 
vices, or in some cases, by human workers. The great advantage of such schemes in industry is 
that considerable retooling can be done in software rather than in hardware. The programming of 
these systems still tends to be a bit of arcane art, since the devices are quite complex; however, 
the underlying geometry imposes a rigorous framework, within which such programming can be 
carried out. In research labs, the state of the art has progressed considerably further. Mathematical 
techniques have been developed that permit complex devices with several non-linearly interacting 
degrees of freedom to be controlled in regimes where dynamic factors dominate, provided again, 
that accurate kinematic and environmental models are available. 

In domains where accurate geometric models are not available, programmable mechanisms 
have had decidedly less impact. This is not due to lack of applications, though they lie less 
in production manufacturing than in other areas; for instance salvage, exploration, cleanup, and 
assembly/disassembly in environments that are hazardous, remote, or too large or small in scale 
for human operators to function in efficiently. Mining and excavation of hazardous waste sites have 
also been proposed as potential applications, as have devices to aid the handicapped, and even 
assist in surgery. The fact that tele-operated devices have been used to good effect in many of the 
above applications demonstrates that the mechanical technology needed for such operations already 
exists (though it could probably be improved). There is no lack of demand for usable technology 
in this area. Teleoperation is a difficult, error prone, and highly skilled occupation. Incorporation 
of some degree of automation, from semi-autonomous "tele-assisted" control, to full automation of 
significant tasks or subtasks, would substantially reduce the demands on the operator. 

1.2 A Problem: Complexity 

A fundamental problem in sensory-motor control is system complexity. The mechanical systems are 
complex; often having highly non-linear kinematics, problems with singularities, redundant degrees 
of freedom and multiple devices. The sensors, and the algorithms used to extract information 
from them are complex and often ill-defined, especially in the case of visual sensors; and there are 
many different sensory modalities. The interfaces to the mechanical devices are frequently arcane, 
generally close to the hardware, and not in a form that maps easily onto natural application 
descriptions. The formalisms for dealing with flexible mechanical devices in geometrically modeled 
domains are complex enough in themselves, but once they are mastered, a user can program a 
flexible mechanism for an application in such a domain. In order to apply sophisticated sensory- 
motor techniques however, a potential user must simultaneously apply expertise in robot kinematics, 
general control, and machine perception. This is asking a lot. Finally, there is the issue of task 
description. In a certain sense, it is perhaps the central issue; how to describe a complex sensory- 
motor task in a way that is convenient to the user, formally well defined, and robustly implementable 
across different devices and sensor configurations. If this issue can be satisfactorily addressed, the 

others may well fall into place. 



The absence, in our domain, of prior models means that information about the environment 
(and in some cases, about the mechanism) must be acquired through sensory modalities. Such 
information comes in a number of forms, and only occasionally is it in the form of calibrated 
geometric attributes. For this reason, the techniques that have been developed for control in well 
specified environments cannot be applied directly. In the last decade, however, significant progress 
has been made in the development of sophisticated artificial sensing modalities, especially in the 
case of machine vision. Although vision is not by any means a solved problem, algorithms for 
tracking, stereo, motion analysis, object recognition, and others capabilities have exhibited good 
performance in a number of situations, especially in constrained environments. Coupling particular 
sensory abilities with robot hardware has produced several impressive laboratory demonstrations 
of sophisticated sensory-motor control. Despite these successes, such technology has not seen 
substantial use in practical applications. We believe that a primary reason for this is the lack of a 
unifying superstructure for hiding, from a user standpoint, the complexity inherent in sophisticated 
sensory-motor systems and packaging them into standard, usable chunks. 

1.3     A (Partial) Solution: Structuring through Virtual Tools 

The solution to complexity is organization. In this paper, we describe a construct termed a vir- 
tual tool that provides a means of reducing the complexity of designing, describing, directing, and 
analyzing the performance, of sophisticated sensory-motor systems. The construct is particularly 
useful in dealing with visual-motor control and systems with redundant degrees of freedom. The 
basic approach is simple: reduce complexity by hiding, at any given moment, whatever you don't 
need to know about the system, e.g., redundant mechanical freedoms, extraneous sensory informa- 
tion, awkward control bases etc. The reason for thinking that such an approach might be feasible 
stems from the observation that a lot of manipulation (and other) tasks have momentary descrip- 
tions that, with appropriate context, are very simple. Rotate the housing 90 degrees. Move lever 
up. Place gasket on manifold. Tighten bolt. Press firmly together. Align components. Compress 
fitting. Bend to shape. Advance three clicks. Slide into place. Fill to line. Pick it up. Insert it. 
Pull it out. Screw it on. Drive Forward. Climb up the mountain. The point is, the basic oper- 
ations that people are accustomed to often use descriptions that involve only one or two objects, 
and movement or deformation in a single conceptual degree of freedom. 

We would like to utilize a similarly simple description when dealing with artificial sensory-motor 
systems. Our basic idea is to use extra degrees of freedom available in a flexible mechanical system, 
in conjunction with sensory feedback, to dynamically configure the system so that, from user 
standpoint, it looks like a special-purpose device for a particular task. This virtual tool is created 
by imposing customized, sensory modulated constraints between various degrees of freedom in the 
system. The remaining degrees of freedom (if any) constitute a small set of control parameters 
that are fitted to a particular operation. The sensory modulation is crucial, because it permits 
virtual tools that cannot be defined in terms of fixed, low-dimensional loci in the manipulator 
configuration space. Virtual tools can be grouped into classes exhibiting common functionality, 
but distinguished by particulars of their configuration. The notion of a tool class is a fundamental 
structuring concept, and is defined more formally in the next section. 

A simple mechanical example of the virtual tool idea is a crescent wrench, which represents a 
class of virtual wrenches. However, in a computer controlled manipulator, a configuration need not 
take the form of static settings of particular degrees of freedom, but can consist of more general 
relationships. We will show a number of examples of this in subsequent sections. Mathematically, 
of course, this is simply reducing the dimensionality of the system through constraints, which is 
a classic technique. What is new, is the idea of having a large set of predefined constraint classes 



that are dynamically selected and imposed in response to the demands of the current task on the 
basis of available sensory information. One way of looking at the approach is that, instead of 
forcing the user to utilize a single mode of description (e.g. 3-D coordinates) in which all tasks 
can be described but none can be described easily, we provide a multitude of descriptions, (virtual 
tool classes) each of which make it easy to describe a particular sort of task. As an operation 
progresses through different phases, different descriptive modes will be successively brought into 
play. Such tools could be used in various modes, from elements of a programming language to 
semi-autonomous (tele-assisted) operations, to primitives used by an intelligent controller in more 
fully autonomous systems. Several such uses in will be illustrated in the following sections. 

All this is not a lot of help if the tools must be re-implemented for each application. However, 
we argue that within the confines of fairly broad application domains (e.g assembly, custodial op- 
erations, outdoor navigation), a small set of "tool classes" can be defined, perhaps no more than 
a dozen or two, that will serve as a general purpose sensory-motor toolbox for a wide variety of 
applications. Moreover, we believe that these tool classes can be made broadly portable across 
platforms. Section 3.3 describes in detail why we believe this is possible, and we describe several 
examples later, where we have ported tool classes, with preservation of semantics, to radically 
different platforms. Basically however, the idea is that functionality is, to a large extent, device 
independent, and that functionally derived primitives should be implementable on any device sat- 
isfying specified minimum requirements. The overall organization we envision for using virtual tool 
classes in application domains is illustrated in Figure 1. 

1.4     Overview 

In order to be successful, such an approach must satisfy certain conditions. First, useful tools 
must be implementable using available technology. Second, the tools must be reusable across 
applications. In particular, there should be a relatively small "toolbox" of basic tool classes that 
will suffice to handle a substantial percentage of the situations which the user will encounter. 
(Obviously if every particular situation requires the development of a completely new tool, no 
efficiency is gained). Third, low-level details of the instantiation of tools in specific instances must 
be performed automatically. It is reasonable for a high-level user to specify that a certain grasp 
tool be used to pick up an object, but not to provide numerical information on the dimensions and 
position of the object. This is where the use of sensory information comes into play. Finally, the 
tool class definitions must be such that they can be made portable between different mechanical and 
sensory platforms. Moreover, it must be possible to provide a system of specification for quantifying 
the variations that will inevitably occur between implementations on different systems. 

In this paper, we provide strong evidence in terms of implemented systems, for the first three 
points. Somewhat weaker evidence is presented for the fourth point, mainly because our access to 
different platforms is somewhat limited. The remainder of the paper is organized as follows. Section 
2 briefly establishes a historical context, and surveys some supporting work. Section 3 formalizes 
the basic definitions for tools and tool classes, and discusses the use of visually modulated tools. 
Section 4 describes the definition and implementation of a number of tool classes for the domain 
of visually-controlled placement and assembly, illustrating the practicality of implementing useful 
tools using current technology. Section 5 shows these tools working in conjunction to perform 
different extended operations, thus illustrating portability between applications. Section 6 discusses 
portability between platforms. 



Laying a puzzle Putting in a lightbulb 

Figure 1: Implementation platforms and use of virtual tool classes 



2 Historical Context 

This paper draws on a large amount of previous work. The approach has it roots in work on active 
or behavioral vision; the connecting thread being the idea that perception is intimately tied up 
with action. Recent work on active vision [1; 8; 6; 7], and more generally, active perception [4; 
5] has addressed how directed control of the sensor characteristics (e.g. eyes, or tactile receptors) 
can simplify the process of obtaining the desired information. Most work to date has focussed 
on the effect of the ability to move the sensor [12; 35] or dynamically change an internal focus of 
attention [30]. Work on purposive or behavioral vision [2; 27; 26; 22] attempts to take the context 
of the task explicitly into account. The work described here is an application of these ideas to the 
areas of manipulation and functional model acquisition. 

Our method is also somewhat related to work on redundant manipulation, the connection being 
that redundancy resolution, like virtual tool instantiation, reduces complexity in a system by im- 
posing internal constraints. Most of this work makes little explicit use of functional considerations, 
and has centered on finding efficient mathematical methods for regularizing the inverse kinematic 
problem [23; 37; 17; 37]. Several researchers have addressed the idea of using the extra degrees of 
freedom to accomplish several goals at once, which is functional in a somewhat different way [25; 37; 
10; 24]. Task based specific reduction of the dimensionality of the space has appeared in couple of 
special cases, most notably in Raibert's notion of a virtual leg [29], and the idea of viewing a hand 
as several more specialized manipulators lumped together was discussed by Iberall [19] in the con- 
text of grasp classification. However, the idea of flexible, task dependent dimensionality reduction 
as described here does not appear to have been utilized as a general structuring mechanism. 

In our implementation of specific visually-modulated tool classes, we make use of techniques for 
differential visual feedback control that were pioneered primarily by Weiss and Sanderson [31; 32; 
33]. Since then, real world implementations have been made by a number of researchers, e.g., [11; 14; 
13; 34; 16; 38]. An adaptive controller, which is key to making some of the visual implementations 
work well without prior models was developed recently here at Rochester [21] and in Japan [18]. 
Previous approaches either assumed that the system need only be calibrated once (e.g. [9]) using 
a set of specific "test movements", that it could be decoupled into a set of single variable adaptive 
controllers (e.g. [33]), or that the system could be modeled using an ARMAX model (e.g. [14]). 

At the higher level end of task specification and trajectory planning, we have been inspired by 
the user friendly "learn-by-watching" interfaces found in [20; 36; 28]. These approaches are close 
to ours in spirit, in their efforts to provide usable interfaces to complex devices, but they address 
a higher level of task acquisition than the fundamental tools we describe here. However, these 
approaches could very well make use of virtual tool classes as a vocabulary to express what they 
observe. The lack of a effective vocabulary is one of the primary challenges in such systems. 

3 Basic Definitions 

3.1     Virtual Tools 

The basic idea of a virtual tool is drawn from the observation that the most efficient way of 
performing a task is generally to use a device that is specially designed for it. This is a fundamental 
principle of hard automation, and a primary reason that highly flexible robots have not, so far, been 
in much demand for mass production operations. The reason for this is that most tasks, even very 
complicated ones, can be reduced to a sequence of operations that require the control of only a few, 
carefully engineered degrees of freedom. This suggests that a way to use extra degrees of freedom 
in a system is to use them to customize, or "tailor" the system so that it becomes, in essence, a 



special purpose tool for the task at hand. We call the resulting instantiation a virtual tool. Formally, 
this tailoring takes the form of implementing constraints on the degrees of freedom of the system 
through lower-level control processes. Remaining degrees of freedom appear as control parameters 
of the virtual tool, and can be used by higher-level processes, or by a human teleoperator, to control 
the system. Since the control parameters are directly linked to the task at hand and are of low 
dimensionality, the control problem can be greatly simplified. Furthermore, the device can shift 
facilely from one virtual tool to another as the system progresses through the stages of a complex 
task. 

As mentioned above, an actively controlled system, has the advantage that it is possible to 
impose constraints more general that simply fixing a mechanical degree of freedom as in an ad- 
justable wrench. For example, two adjacent joints in a planar chain linkage could be constrained to 
maintain equal angles, and the two degrees of freedom replaced by a single one specifying the total 
deviation through the two joints. A more complicated example would be constraining two 6DOF 

manipulators to maintain a constant distance between manipulator endpoints—a virtual link. The 
addition of sensory information is the final generalization. For example, a manipulator could be 
constrained to move in a particular plane while remaining a fixed distance from some surface. There 

is a single controllable degree of freedom in this system; however, it cannot be predefined in terms 
of purely kinematic constraints. 

The idea of a virtual tool is similar to, and takes its name from some techniques that have 
been described previously for dealing with some highly specific situations. An example is the 
virtual finger introduced by Arbib et al. [3], which is composed of one or more real fingers working 
together to perform a task. [19] describes how a hand can be used as three different grippers by 
changing the mapping of virtual fingers to real fingers. Similarly, the concept of virtual legs has 
been used, e.g. by Raibert [29] to derive two and four legged gaits from algorithms originally 
designed for a one-legged hoping robot. The idea of using the reduction as a general method for 
packaging sensory-motor devices, however, was not developed in either case. 

3.2    Virtual Tool Classes 

As described above, a single virtual tool is not very useful as a general device, since it only applies 
to a specific situation. The tools used for rotating two different sized objects using the fingers of a 
robot hand, for example, will most likely involve slightly different constraints. What is needed, is 
an effective means of instantiating the constraints defining appropriate virtual tools. Since a user 
cannot be expected to provide the necessary constraints at a high level of detail, the process must 
be largely automatic, and definable by a few parameters that can be easily supplied by the tool 
user (man or program). In many cases the information needed for instantiation will be derived 
from sensor data. 

Instantiation involves two natural levels of description. At the top level is a description that 
corresponds to a class of tools that are used in similar ways. At the lower level is a set of discrete 
parameters that describe how the particular tool is fitted to a particular instance of the problem. 
For example, in the domain of hand tools, a top level description might specify use of a 12 point 
box wrench (as opposed to a hammer, a punch, or an alien wrench). The lower level description 
would specify that it is a 5mm wrench. Both these decisions can be made on the basis of sensory 
information, but rather different levels of processing and decision-making are involved. 

This dichotomy provides the basis for a fundamental structuring element: the virtual tool class. 
Intuitively, tool classes correspond to natural functional classes described above. Formally, we can 
define a virtual tool class as a set of virtual tools indexed by a set of instantiation parameters which 
modify the defining constraints in a predefined manner. Usually, the instantiation parameters will 



consist of a small number of variables taking on continuous values in a fixed range, for example, the 
width of a wrench tool, or finger setpoints in a grasp tool, but there are a few examples where some 
other enumeration scheme may be appropriate. The value of the tool class as a structuring element 
arises from the fact that between-class distinctions correspond to functional distinctions in the 
world, thus making tool classes a natural primitive for a task-oriented language. The instantiation 
parameters, together with any tailored control parameters form the user interface for a tool class. 

The instantiation of tools within a class is conceptually straightforward to automate. The basic 
approach is to include instantiation procedures as part of the class definition. Specifically, class 
definition provides a-priori, a mathematical form that the constraints will take, along with a number 
of free instantiation parameters defining them. For example, consider a tool to execute a grasp with 
a robot hand. In the simplest case this tool might have single associated control parameter that 
would essentially represent the degree of closure. Position, orientation, and initial closure would 
represent instantiation parameters to be initialized on the basis of sensory measurements of the 
object to be grasped. In this example, instantiation places the tool in the correct orientation with 
respect to the the object to be grasped. The closure parameter could then be decreased by the 
system until sensory input (e.g. tactile sensors) indicated that the object was securely grasped. Or 
the closure control parameter could be eliminated entirely, and replaced by instantiation parameters 
specifying force of grasp and speed of closure. 

3.3     Class Structure 

We believe that virtual tool classes can provide a structuring element that is transportable across 
both applications and environments. The idea is feasible because, although a large number of 
different manipulators and sensing devices are available, the raw control and sensing interfaces are 
dominated by a few modalities. On the control side there is position, velocity, and force control. On 
the sensory side there are position, velocity, force, and imaging sensors. This raises the likelihood 
that a set of generally useful tool classes can be defined in a way that is, to some extent, device 
independent. Not every tool class could be implemented in every mechanism, of course, but the 
basic manipulator types (grasp devices, transport devices, local manipulators) are few enough so 
as to allow broad generalizability. 

For any specific device of course, some re-implementation of the tools will be necessary; the ideas 
is that this would be like providing a compiler for a new machine architecture (only hopefully easier). 
Old implementations could be substantially reused, and given the existence of the appropriate 
control and sensory modalities, implementability could be guaranteed for any device with sufficient 
degrees of freedom and adequate workspace. There would also be some variation in the limiting 
capabilities of the same tool on different devices (due to variation in size, speed, power, etc). The 
idea is that most of this variation could be covered with a class specific set of specifications, that 
would have different values on different platforms. 

The following template is an outline of the structure we have used in defining virtual tool 
classes. This template is not intended as an artifact for formal proofs, but rather as instructions to 
the human implementer and user. In particular, descriptive categories such as preconditions and 
unconstrained degrees of freedom are not intended to be inclusive sets (doing so would drag in the 
frame problem), but as pointers to especially critical factors. 

Template for tool class definition 

• Resource requirements: Constraints on hardware and software components needed to imple- 
ment a tool class. 



1. Mechanical hardware: Constraints on the mechanism, e.g., how many degrees of spatial 
freedom are required? are oppositional freedoms needed? 

2. Mechanical software: Usually low-level control software. Is force control required? ve- 

locity? 

3. Sensory hardware: Sensory devices required by the tool. Force, position, imaging sensors, 
and minimum resolution if applicable. 

4. Sensory Software: Sensory processes required, e.g. visual tracking, recognition abilities, 
force profile analysis. 

5. Other Tools: Tool classes may be defined hierarchically. Though technically, other 
virtual tools are composed of mechanical and sensory resources, we want to distinguish 
cases where these resources have already been organized at some level. 

• Resource Specifications:   These are the numbers that distinguish the performance between 
instantiations of the same tool on different systems. 

1. Mechanical hardware specs: Workspace, payload etc. 

2. Mechanical software specs: Technical limitations on control system, update rate, etc. 

3. Sensory hardware specs: Camera resolution, tactile sensitivity, etc. 

4. Sensory software specs: Recognition error rates in domain, tracker update rate and 
maximum velocity, noise in pressure sensors, etc. 

• Functional Description: High level description of functionality 

1. Nominal effect: Detailed description of tool function. What is done, grasp, move, align, 
etc., with what constraints and under what form of guidance. 

2. Notable unconstrained parameters: In some tool definitions certain functionally irrele- 
vant, but easily controllable freedoms may be left unconstrained. For example, a trans- 
port tool might explicitly state that the changes in orientation of the transport class are 

not constrained by the definition. 

3. Success preconditions: Significant conditions that must hold in order for nominal effect 
to take place. These are necessary, not sufficient conditions, intended to inform the user 
about critical factors that are likely to affect tool performance. 

4. Functional specs: Accuracy specifications that can be associated with tool use. 

5. Failure modes: What happens under certain modes of failure (e.g. loss of visual tracking, 
grasped object dropped, impossible commands). Again, not intended to be inclusive. 

• Functional interface:   This is how the user, whether human or computer process, actually 

make use of a tool. 

1. Instantiation preconditions: Conditions that must hold before a tool of this class can be 
instantiated. For example, a robot hand must grasp an object before it can manipulate 
it. These are usage hints, not an inclusive list. 

2. Instantiation parameters: The numbers (or flags) that specify a particular tool in a 
tool class. The instantiation procedure uses these parameters to initiate the low-level 
processes that define the virtual tool. 



3. Control parameters: These are tailored degrees of freedom that are attached to some 
tools. Many tools may have no control parameters. Such tools can be treated as stan- 
dalone processes that perform some task and then return. A tool with control parame- 
ters, on the other hand, must typically be embedded in some sort of control system. 

4. Output parameters: User readable parameters, representing sensory data or some aspect 
of internal tool state. Strictly speaking, they are unnecessary, as a user may run an arbi- 
trary sensory process in conjunction with a tool without affecting its operation. However, 
for some tool classes, there may be state or sensory attributes that are frequently needed 
when tools from the class are used (e.g. torque on a wrench tool). 

3.4 Toolboxes and Tool Transformations 

Generally, a sophisticated operation will involve the use of more than one virtual tool. We believe 
that for rather broad domains, there exists a relatively small set of virtual tool classes, perhaps 
no more than a few dozen, that will cover a significant proportion of the situations encountered in 
any particular operation in that domain. Of course, there will often be cases where custom tools 
are required, but our position is that having the right virtual toolbox can eliminate a very large 
proportion of the implementation effort. 

As an operation progresses, a sensory motor-system will frequently need to switch from one 
virtual tool to another. From a user standpoint, this transition must take place seamlessly. This 
is accomplished through a tool transformation, which amounts to a highly constrained change of 
control basis. In particular, since virtual tools are associated with control parameters that change 
the physical configuration of the robot device, it is possible for two different virtual tools to have 
the same physical configuration for certain settings of the control parameters. At this point, a 
seamless transition can be made, and a different set of constraints swapped in. There is no physical 
discontinuity, but we now have a different set of control parameters, and different constraints. 

Such a tool transformation instantiates a new tool at the transition point, which requires spec- 
ification of a set of instantiation parameters. Some of these parameters can be determined from 
the condition requiring physical continuity at the transition. The others must be extracted from 
sensory data. Specific procedures on how transformations are accomplished must thus be provided 
at the level of the tool box. In particular, when a virtual tool class is incorporated into a toolbox, 
information must be provided regarding what transformations are possible, and what constraints 
hold between instantiation parameters in each case. Section 6 provides some examples of this 
operation, but assembly of a fully integrated toolbox is a topic of ongoing research. 

3.5 Sensory Integration 

In the preceding material, we have discussed the incorporation of sensory information into the 
definition of a virtual tool, but have not addressed how this might be accomplished. To do this we 
propose to utilize a perceptually based model of sensory control, which is described below. 

Traditional approaches to robotics control have utilized explicit geometric models of the world. 
These models serve as a central "clearing house" between perception and action. Perceptual pro- 
cesses update the model, goals are specified in terms of desired states of the model, and actions are 
described in terms of transformations of the model. The problem with this approach has been that 
models have been chosen on the basis of their mathematical or transformational simplicity, with (at 
most) secondary consideration given as to whether real-world perceptual and motor processes can 
be easily mapped to the central model. The result has been "failure of perception or modeling" in 
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which actual perceptual processes and motor devices fail to conform to the abstract specifications 
of the model, resulting in poor performance of the system. 

The virtual tool framework allows us to employ perceptual information more directly. The 
basic idea is to describe the perceptual constraints associated with a tool class in terms of sensory 
parameters that are actually available rather than in terms of an abstract spatial model that we 
hope can be derived from sensory data. For example, a tool that involves visually verified placement 
can utilize information specified in image space rather than in a separate geometrical space which 
must be accurately calibrated in order to work. The elimination of the requirement of a single 
central representational model allows us to stay much closer to the information available from 
the sensor. This does not imply that no higher-level perceptual processing need be performed. 
On the contrary, sophisticated processing will often be employed, but such processing will be in 
a constrained environment associated with a particular tool class, rather than being required to 
be generally valid. This is an enormous advantage, especially when using visual perception, since 
current technology has produced visual processes that work quite well in constrained domains, but 

has been considerably less successful in producing techniques that work in arbitrary environments. 
Under this view, constraints associated with a virtual tool class may involve particular percep- 

tual processes that are specified in the class definition. Furthermore, goals associated with the use 
of a tool can be specified in terms of the same perceptual processes. This leads to a model of task 
specification where actions are specified in terms of shifting sets of perceptual processes, rather 
than in terms of a single central model. In keeping with the parallel idea of "active perception", 
we term this approach perceptual action. The basic functional unit in this model is a "precondition 
perception, action, goal perception " primitive, where preconditions for action and process goals 
are both specified in terms of available perceptual primitives (e.g. in image space). This model is 
more fully discussed in [21]. 

Perceptual processes associated with a tool class serve several distinct functions. First, as men- 
tioned above, they provide information that may be necessary for instantiating a specific instance 
of a tool class. Second, they provide the perceptual triggers that initiate the transformation from 
one tool to another during the execution of a complex operation. Third, they provide feedback 
information that is used to maintain the constraints that define a virtual tool. Finally, they provide 
a well conditioned interface through which manipulation with a single tool can be controlled by 
sensory-motor feedback. 

3.6    Vision-based Tools 

In our work, we have particularly emphasized visual sensing. Vision alone is not sufficient to im- 
plement a general toolbox, but it is a rich and flexible modality that has the potential to facilitate 
a wide range of operations. A tremendous amount of research has been done in the area of visual 
perception, and a large number of algorithms exist for different applications which, although not 
fully general, can be demonstrated to perform well under constrained conditions. This is exactly 
the situation we have in the application of a virtual tool: the perceptual processes are only required 
to work in a particular context. Visual processes that are potentially useful for defining, instanti- 
ating, or guiding virtual tools include feature detection, object recognition, shape analysis, motion 
analysis, and visual tracking. 

A particularly promising area with respect to virtual tools is a general technique of uncalibrated 
visual control known as visual servoing. This has been around, in simple forms, for some time, 
but recent developments, at Rochester and elsewhere have demonstrated that the technique can 
be used in situations involving many degrees of freedom, with sophisticated visual features, and 
without any prior knowledge of camera parameters, world geometry, or robot kinematics. 
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The idea is to relate changes in scene or object appearance to a set of manipulator freedoms 
by means of a generalized Jacobian. In particular, suppose that the relevant factors concerning 
the appearance of a scene or object can be represented by a vector x of scalar quantities. These 
quantities might be the image coordinates of certain image features such as corners, or they might 
be the lengths, orientations, and centers of line segments, or parameters describing extracted blobs, 
or even colors. In general, any task-relevant scalar that is expected to change in a continuous way 
when the object is manipulated could be used as a feature. We also have a vector y representing the 
current controllable freedoms of the mechanical system. These might be standard manipulations 
like rotations about various axes, translations in various directions, or combinations of these. But 
they could also correspond to various deformations of the object; for instance bending or twisting, 
or articulation about a joint, or any of the tailored control parameters associated with a virtual 

tool. 
To make the discussion concrete, suppose we are manipulating an object. For a particular pose 

of the object, we can describe the change in appearance of the object under a small manipulation by 
the partial derivatives of the feature values with respect to that manipulation. If we stack together 
the partial derivatives of all the feature values with respect to the various control freedoms we know 
about, we obtain a generalized Jacobian matrix J that relates changes in the appearance of the 
object to a general (small) manipulation composed out of the controllable freedoms by Ax = JAy. 
We refer to this as the motor-visual Jacobian. The Jacobian J has a nice property; it can be 
determined experimentally on line. In the most explicit case, the robot can pick up an object, 
look at it, make small manipulations along the controllable freedoms, and observe the changes in 
appearance. The terms of the Jacobian are approximated by ratios of differences. 

However, the Jacobian can be determined more elegantly using an adaptive procedure starting 
from a guess. The procedure often works even for a very bad guess (i.e. a random one). The idea is 
to watch the actual effect of a commanded movement and compare it to the change that is predicted 
on the basis of the current Jacobian estimate. The difference can be used to correct inaccuracies 
projected along the direction of motion in appearance space. If the path followed has sufficient 
structure, the entire Jacobian can be kept up to date. In fact, it can be shown, that even if the 
path does not contain sufficient structure to determine the entire Jacobian, the approximation that 
is obtained has bad effects only out of the subspace spanned by the path, which means that the 
adaptive approach can be used to acquire and maintain a partial model that is precisely fitted to a 
particular manipulation. A more detailed description of the visual servoing algorithms we employ 

can be found in [21]. 
Adaptive visual servoing can be applied in conjunction with virtual tools in two ways. The 

first is externally, to visually control a tool through its control parameters (the tailored degrees of 
freedom that are associated with it). This is the traditional use of visual servoing, with the bonus 
that the control parameters are likely to be well conditioned due to the efforts of the designer of 
the tool class. The basic idea is to determine a Jacobian associated with the control parameters 
of the virtual tool that is currently instantiated. This could be done either directly, or adaptively 
starting with an approximation derived from prior knowledge about the virtual tool. We then 
somehow obtain a goal condition that describes the appearance of the object when the desired 
manipulation has been completed. The goal description could come from prior knowledge, from 
a high-level controller, or it could be constructed from high-level hints provided by an operator 
in a tele-assistance system. We then compute an appearance difference vector Ax, solve for a 
manipulation vector Ay using the pseudoinverse of J, and servo on this result using whatever 
control law we desire. 

The second, and more interesting application, is to use visual servoing processes as part of the 
tool definition in constructing higher-level tools. For example, we might have a transport tool class, 
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where the control parameters include the desired object location in image space in a pair of live 
images, and whose effect is to move a grasped object along a straight line from its current position 
to the specified one. (Note that this is not a complete class description; we have not specified how, 
if at all, rotations are constrained, or anything about temporal behavior). Instianting an instance 
of this class then involves setting up the visual servoing machinery to move the object from the 

initial position to the goal, including starting appropriate tracking systems, and providing an initial 
guess for the Jacobian. During use of the tool, i.e. while the transport operation is executing, the 
visual servoing processes act to maintain the invariants associated with the tool - in this case the 
spatio-temporal constraints defining the desired path. It is this sort of use of visual processes that 
we are most interested in, because here they serve to hide complexity and make a system more 
usable. 

4    Implemented Tool Classes 

In order to demonstrate that our approach is practical using available hardware and sensory 
alorithms, we have implemented a number of virtual tool classes on hardware that we have avail- 

able. On the robot side we have used a couple of PUMA robot arms with different link lengths, and 
a Utah/MIT dextrous hand. Vision sensing was provided by a a number of different CCD cameras. 

The hand comes with joint position and tendon tension sensors, and we have added tactile sensors 
to the fingertips, which are used in some of the grasp tools. 

4.1     Grasp Tools 

Our first example is a dextrous grasp tool class, intended for use with multi-fingered devices that 
have degrees of freedom remaining after the grasp is completed, allowing the grasped object to be 
manipulated. The tool definition does not refer to these additional degrees, and the tool class could 
be implemented on a parallel jaw gripper, but there it would be just another name for a simple 
close-the-jaws grip. 

The mechanical requirements for the class are a device with two or more "fingers" and sufficient 
degrees of freedom so that, for any configuration where the freedoms are not at their limits, an 
opposition can be implemented between any pair of fingers. The Utah/MIT hand satisfies this 
requirement. So does a parallel jaw gripper. Hardware and low-level software compatibility with 
position and force control are also required. The sensory requirements are tactile contact sensors 
on the fingers that can specify whether or not the oppostion surface of the finger is in contact with 
an object, and some measurement of the normal forces at a fingertip. 

The use of this tool (preconditions) assumes that the gripper is initially placed in a position 
where it can grasp the object. The instantiation parameters provided by the user (process or 
person) specify a gripper preshape (initial finger positions) appropriate for the object to be grasped, 
a minimum opposition force, and a closure speed. The class has no free control parameters. The 
operation of the tool is to close the fingers from the preshape positions towards a grasp center, until 
they contact the object, and then increase the forces on the fingers until the minimum opposition 
force is obtained in at least one finger. The particular implementation will guarantee that the 
maximum force at this point does not exceed some specification constant times the minimum force. 

We implemented this grasp class on the Utah/MIT hand, using the analogue PD controllers 
in the hand for both position and force control, and Interlink sensors for tactile information. For 
specific applications, the above grasp tool class can be rolled inside of a more specialized class; 
for example, one where instead of requiring a preshape position for each finger, a single preshape 
parameter specifying degree of openness of the whole hand could be used.   This specialized tool 
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can be used in cases where the objects are such that careful finger placement is not required for a 
secure grasp. For all the applications we have performed so far, the specialized version has proven 
adequate. 

4.2 Rigid Manipulation Tools 

The next example, is an instance of the use of a virtual tool class purely for the purpose of dealing 
with a highly redundant, and for the purposes of manipulation, poorly conditioned control basis. 
The Utah/MIT hand is a flexible manipulator having four fingers, each with four joints. The 
native control system consists of 16 independent PD controllers, one for each joint, implemented in 

analog circuitry. In order to make the hand more useful for object manipulation, we implemented 
a tool class for local, 6 DOF rigid manipulations of arbitrary grasped objects. This is a low- 
level tool, the equivalent of which comes packaged with most commercially available manipulators. 
Implementing this class on a Puma robot arm is trivial. Putting it on a flexible hand, however is 
more challenging. This is a simple example of a tool class that is portable across platforms. The 
fact that the achievable rotations and translations using the hand are quite limited compared to a 
PUMA is reflected in the specifications that accompany the particular implementation. 

The system we implemented first uses a grasp tool, such as the one described above, to position 
the four fingers so that they securely grasp the particular object (preconditions). Haptic information 
about the position of the fingers then provides information allowing the instantiation of a virtual 
tool having six control parameters. These correspond to the three principal translations and the 
three independent components of a rotation matrix in the local coordinate system of the hand. This 
tool is adapted to the particular object grasped. More specifically, the instantiation parameters 
correspond to PD setpoint of the fingertips, and the invariants maintained correspond to rigid 
transformations of the tetrahedron defined by the setpoints. Use of the system is illustrated in 
Figure 2. Details are given in [15]. 

4.3 Visual Transport Tools 

This example is a version of the transport tool class described previously. Essentially, it permits 
an object transportation movement to be specified in binocular image space. This tool would be of 
use to a tele-operator who could point to image locations, or as part of a more autonomous system, 
where image locations are provided from other perceptual processes, for example recognition or 
shape analysis algorithms. To give a taste of how it is done, the class definition in terms of the 
template described earlier is given below. 

• Resource requirements: 

1. Mechanical hardware: Manipulator with at least three mechanical degrees of freedom 
spanning a non-zero 3-D volume. 

2. Mechanical software: Low level control software that can be made to support position 
and velocity control. 

3. Sensory hardware: Two live camera systems whose fields of view span the workspace. 
In this version cameras are assumed to be fixed for the duration of a particular tool 
instantiation. 

4. Sensory Software: Real-time, binocular visual point feature tracking. 

5. Other Tools: None. 
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Figure 2: Examples of local manipulation performed by a rigid manipulation tool implemented on 
the Utah/MIT hand. 
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• Resource Specifications 

1. Mechanical hardware specs: Geometry of workspace and Manipulator specs (speed, pay- 
load, etc). 

2. Mechanical software specs: Temporal resolution of controller. 

3. Sensory hardware specs: resolution of cameras relative to workspace. 

4. Sensory software specs: Spatial and temporal resolution of tracking system. 

• Functional Description 

1. Nominal effect: Move manipulator so that specified feature on object moves along lines 
in binocular image space to specified location. 

2. Unconstrained parameters: Orientation change of object. (Note however that imple- 
mentations should try to make this small so that tracker does not fail due to rotational 
occlusion of tracked feature.) 

3. Success preconditions: 

— Line connecting points does not leave workspace. 

— Trackers do not lose tracked feature along line. 

— Visual goal must be physically possible. 

— Cameras should be placed so geometry is well conditioned. 

— No collisions. 

4. Functional specs: 

— Maximum deviation from linear trajectory. 

— Endpoint accuracy. 

5. Failure modes: System halts (we haven't got very sophisticated here yet). 

• Functional interface 

1. Instantiation preconditions: Tracked feature is rigidly attached to manipulator 

2. Instantiation parameters: 

— Image positions in two cameras of feature to be tracked. 

— Corresponding image positions in two cameras of desired location of tracked feature. 

— Timing. 

3. Control parameters: None. 

4. Output parameters: None. 

The definition does not specify how the class should be implemented. In particular, it does not 
specify that visual servoing be used to implement the visual-mechanical connection. If a particular 
installation has enough information available to allow model-based techniques to be used, then that 
is fine. However, the definition does guarantee a certain amount of flexibility, for instance, arbitrary 
camera placement (modulo ill-conditioned configurations) must be supported, and the user cannot 
be required to supply information about this. In our implementation of the tool class, we found 
that adaptive visual servoing was the most effective way to obtain the desired behavior. 

Figure 3 shows an instantiation of this transport class in use. The point following a straight line 
in left and right images is the point that was tracked. The curved paths followed by the others are 
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a consequence of the lack of orientation constraint for this tool class. The implementation shown 
in the figure used a pair of cameras pointed at the manipulator. We also implemented the tool in 
a binocular eye-in-hand configuration, where the cameras are mounted on the manipulator. The 
usage is the same except that the manipulated object provides the un-moving point, and the goal 
location is tracked. This platform port was trivial. We used exactly the same code, interchanging 
only the indentification of the motionless and tracked features. Because of the adaptive nature 
of the visual servoing used in the original implementation, no changes were needed in order to 
acommodate the significant changes in geometry. 

Figure 3: Use of a transport tool. Above: Initial configuration of robot as seen in the left and right 
cameras. Instantiation parameters specify a visual goal near the floor. Below: Goal configuration 
achieved by the controller. The image space trajectory of the tracked feature (straight line) and 
several others is overlaid. 

4.4    Visual Alignment Tools 

We also implemented a visual alignment tool. This is somewhat like the transport tool, only all six 
rigid degrees of freedom are constrained, which requires that at least three points be tracked in two 
images. Tracking more than three points gives better results, and a certain degree of robustness 
against tracker failure, so this class is defined to allow an arbitrary number of point features to be 
used in the instantiation of the tool. Also, unlike the transport tool, it is not necessary to provide 
correspondences between points in separate images. (The actual geometry is a bit complicated, 
and a minimal, well-conditioned solution can be obtained with e.g., three points in one image and 
one in a second: we choose to make it easy on the user and require at least three in each.) 

Usage is similar to the transport tool.   The user (man or machine) specifies current and goal 
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image location of a set of points, and the system does the rest. There is a potential difficulty 
associated with the fact that the specified goal must represent a possible state of the world. The 
intended use of this tool is in assembly applications, for insertion or mating applications, where 
the goal locations can be obtained from the images by virtue of the fact that the parts must 
fit together. If the user has geometric models of the parts, this information could also be used. 
The class definition is similar to that for the transport tool, with the expected modifications. We 
implemented this class on the PUMA robot, using adaptive visual servoing in 6 degrees of freedom as 
the visual-motor control mechanism. As in the case of the transport tool, the adaptive mechanism 
allows the task to be effectively carried out even with no prior information about the camera 
calibration or manipulator kinematics. Availability of a rough guess (provided by the system, not 
the user) improves performance substantially. Figure 4 shows an instantiation of this alignment 
class in use. Note, in contrast to the transport tool described previously, that we have been able to 
instruct the system to maintain orientation, so that, in this example, all the paths associated with 
tracked points are straight. Of course an alignment tool also permits us to specify rotations. 

We have also implemented the alignment tool class on the Utah/MIT hand using the 6-DOF 
manipulation tool described earlier as a component or subtool. The implementation on the hand 
does not achieve the same accuracy as the implementation on the PUMA, primarily because the 
high degree of hysteresis and stiction in the hand requires that the gains in the visual servoing 
system be set low, and the match thresholds be set high in order to avoid oscillation. We are 
currently working to improve the performance by changing the control structure underlying the 
6-DOF manipulator. 

Left image Right image 

Figure 4: Use of an alignment tool for accurate positioning 

4.5     A Visual Bending Tool 

Our final example is an illustration of the complexity that can be handled using adaptive visual 
servoing techniques. Figure 5 shows the use of a bend tool, applied to a non-rigid foam beam. In 
this class, we require two 6-DOF manipulators with a total of 12 degrees of freedom. The user 
essentially supplies a couple of curves in binocular image space indicating the final shape of the 
beam, and possibly intermediate configurations in the case of extreme distortion. In the example 
shown, we tracked the location of points attached to the beam, and provided one intermediate 
configuration. Assuming that the desired shape is attainable, the tool effects it. Again, no model 
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information is used, and no prior constraints were placed on the use of the 12 degrees of freedom. 
This example would, in fact, be very difficult to model explicitly; the beam is non-rigid, and highly 
non-linear over the range of distortion exercised. Actually, this is a case where, depending on the 
sort of bends that are desired, it might be a good idea to implement a sub-tool to remap and reduce 
the raw freedoms of the two manipulators into a better conditioned space (e.g translation, rotation, 
bend and twist), as we did with the Utah-MIT hand. That the implementation worked without 
this is a tribute to the robustness of the adaptive visual servoing algorithm. 

Figure 5: Application of a bending tool. Left: Initial configuration of two manipulators holding a 
foam beam Right: Achieved goal, specified via the tool instantiation parameters, which in this case 
represent binocular image positions of the white dots attached to the beam. 

5     Integration into Applications 

We have established a preliminary integration framework that allows tool classes to be instantiated 
and used sequentially in order to perform a more complex operation. If certain combined operations 
turn out to be frequently used, for example a pickup and insert operation, they can be defined as 
higher-level tool classes that incorporate lower level tools. We ultimately anticipate making heavy 
use of this aspect of the framework. In the current demonstrations however, we have programmed 
in terms of the individual tools described previously. 

Figure 6 shows a shaped piece assembly operation performed under visual guidance by a PUMA 
Robot. The operation is performed in a tele-assistance environment, where the user specifies 
particular pieces, and how they should be inserted by pointing in an image. In this case, the 
system uses a pickup tool to acquire the indicated object, a transport tool to move it close to 
the user-designated insertion point, an alignment tool to line up the specified object corners with 
the specified hole corners, and finally, a local coordinate frame manipulator to perform the actual 
insertion. The system handles all initiation of visual tracking processes and instantiation and 
transformation of tools. The only input the user provides is to point to image locations. 
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Figure 6: Pickup and insertion operation involving use of multiple tool classes. Right: pickup and 
transportation movements. Left: alignment and insertion. 

As a second example, we performed the classic lightbulb insertion task. This operation made 
use of the eye-in-hand version of the visual transportation tool in order to pick up and insert the 
bulb into the socket. Repeated use of the grasp and manipulation tools on the Utah/MIT hand 
were used to screw the bulb into the socket until it lit up. For this operation, the manipulation 
tool was actually rolled into the definition of a more specialized rotation tool, which rotated the 
bulb about the appropriate axis (in this case, user supplied). Again, the system was used in tele- 
assistance mode, with the user input being supplied by pointing at the appropriate positions in live 
images. This operation is shown in Figures 7 and 8 

6     Portability 

One of the primary objectives of the work described here is to provide user-level primitives for using 
sensory-motor control that are portable across applications and across platforms. The examples 
we have presented make a fairly good case for portability across applications. Functions such 
as visually specified movement and alignment, and the need for robust grasping occur in large 
numbers of applications. What is not yet clear, is what the coverage is for a representative set 
of tasks in an application domain. We have performed fairly simple (for a human) assembly 
operations operations using only three or four tool classes. It is clear that more would be needed 
for assembling a space station or conducting an underwater salvage operation, even with a human 
operator in the loop. Clearly, a robot engaged in such a task would have access to a number of 
special hardware tools (wrenches, cutters etc.). Many of these could be used with basic visually 
guided movement and alignment operations, but others would need more specialized classes. We are 
currently investigating more complex assembly tasks in order to get an idea of how many classes 
would be required in a toolbox to cover some given fraction (e.g. 90%, 99%) of the necessary 
operations. 

The case for general cross-platform portability is a little less clear, but here too we have some 
evidence. We have provided several examples of portability of virtual tool classes across platforms. 
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Figure 7: Side view of lightbulb insertion operation, showing binocular eye-in-hand camera config- 
uration. 
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Figure 8:   View of lightbulb insertion operation from eye-in-hand camera, showing pre-pickup, 
pickup, pre-insertion, pre-rotation, and completed phases. 
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The 6-DOF manipulation tool has been implemented on both the Utah/MIT hand and the PUMA, 
as has the visual alignment tool. These are radically different platforms, but the class semantics 
remained the same. The transportation tool was also ported, from a external observer, to an 
eye-in-hand configuration, again with preservation of the semantics (and in this particular case, 
no recoding of anything). Less dramatically, but still significant, we regularly swapped cameras, 
lenses, and observation positions without any need to readjust the software. With the exception of 
the accidental introduction of degenerate (or poorly conditioned) viewpoints, these sort of changes 
are completely transparent as far as the tools we are using are concerned. 

7    Conclusions and Future Work 

In this paper, we have described a construct termed a virtual tool class that provides a flexible 
interface to sensory-motor control, and can provide a substantial reduction in the effort needed 
to incorporate fairly sophisticated processes of this type into applications. Essentially the classes 
provide higher-level structuring elements that are more directly related to typical tasks that the 
raw device interfaces, and sufficiently general so as to be reusable across applications and plat- 
forms. We have described a number of specific tool classes, implemented them on a variety of 
platforms, and used them in coordinated fashion to perform higher level operations. In particular, 
we have described several visually-modulated tools that have robust implementations based on 
visual servoing. 

Current research involves implementing additional tool classes needed for performing more 
complex assembly operations, and coming up with formal protocols of integrating sets of tool 
classes into usable toolboxes. With more complex assembly operations higher-level planning also 
becomes increasingly important, and we are investigating how higher-level organizational strategies 
can be incorporated into the framework. This involves not only high-level planning and description 
formalisms, but higher-level visual procedures such as recognition and object search as well. 
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